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When a drop or bubble of radius b is formed in surfactant solution, surfactant
adsorbs, diffuses from solution, and desorbs to establish the equilibrium surface
concentration. The transport coefficients for diffusion, adsorption, and desorption
are fundamental parameters. However, the transport mechanisms that control the
interface far from equilibrium are highly context dependent. Thus, no surfactant
has universal ‘‘diffusion-controlled’’ transport. Here we identify a new length scale,
RD-K, that depends on surfactant physicochemistry, and which ranges from
roughly 15 to 65 microns. For drops or bubbles with b<<RD-K, mass transfer
is kinetically controlled. For b>>RD-K, mass transfer is diffusion controlled. Simu-
lations of adsorption to quiescent spherical interfaces support the importance of
RD-K in determining the controlling transport mechanism for surfactant solutions
with concentrations below the critical micelle concentration (CMC). While the case
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of surfactant adsorbing to a bubble is discussed in detail, the arguments presented
are quite general and should apply to adsorption of any solute to any spherical
particle.

Keywords: Dynamic surface tension; Microfluidics; Capping agents

INTRODUCTION

Surface tension evolutions of pendant drops or bubbles are analyzed to
find the transport kinetic constants that determine the rates of surfac-
tant diffusion, adsorption, and desorption. When drops or bubbles are
formed in surfactant solutions and moved by applied fields (be they ap-
plied pressure fields, gravity, or electric fields), these transport coeffi-
cients must be understood to predict drop or bubble behavior. The
transport coefficients for diffusion, adsorption, and desorption are fun-
damental parameters that are independent of the context in which
they are applied. However, the transport mechanisms that control
the interface far from equilibrium are highly context dependent. Thus,
it is incorrect to state that a surfactant has universally ‘‘diffusion-
controlled’’ transport without addressing the drop radius and prevail-
ing solution conditions (e.g., absence or presence of flow, and analyses
of relative rates of adsorption and desorption). Here we develop a scal-
ing argument to identify a characteristic length scale for surfactant
adsorption, RD-K. For quiescent drops or bubbles with radii smaller
than RD-K, mass transfer is kinetically controlled. For radii larger than
RD-K, mass transfer is diffusion controlled.

The shape of a pendant drop or bubble is determined by gravity,
which distends the bubble, and surface tension, which resists this
deformation. The balance of these forces is expressed in the Young-
Laplace equation, which in scaled form contains the Bond number

Bo ¼ Dqgb2

c
; ð1Þ

where Dq is a density difference between the drop or bubble and the sus-
pending fluid, g is the gravitational constant, b is the drop or bubble
radius, and c is the surface tension. When Bo is sufficiently large, the
distension of the drop or bubble shape by gravity is sufficiently pro-
nounced so that shapes differ with surface tension. In this circum-
stance, numerical solutions of the Young-Laplace equation can be
compared with observed shapes to determine the surface tension. A
major advance in this technique was made when Rotenberg et al. [1]
recognized that drop or bubble silhouettes could be obtained using
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digital cameras and analyzed rapidly and precisely. Bubble radii are
always limited to approximately 10�3 m in pendant bubble studies for
aqueous systems, owing to the requirement that the bubble be large
enough for gravity to distend it but small enough that surface tension
forces along the three-phase contact line remain sufficiently strong to
retain the bubble on the needle. Thus, most pendant bubble analyses
are performed for Bo of roughly 0.15 (e.g., see previous pendant bubble
studies [2�10]). Similar restrictions emerge for drops. Because of this,
the impact of drop or bubble radius on the controlling surfactant mass
transfer regime has not been explored in dynamic surface tension
experiments. With the advent of microfluidics, in which drops and bub-
bles of submillimeter-to submicron-length scales are formed and
manipulated, the importance of understanding the influence of bubble
or drop radius is increasing [11]. At these reduced radii, the mass trans-
fer mechanisms that govern surface tension evolution change, simply
because of the dependence of bulk Fickian diffusional fluxes on
geometry. This effect is the focus of this article, in which drops or bub-
bles are sufficiently small so that their curvature is significant in the
surfactant Fickian diffusion flux but sufficiently large compared with
molecular dimensions so that curvature-related corrections need not
be made to the definition of the surface tension or to the adsorption
isotherm. The arguments are general and can be extended to adsorption
to solid particles. While the ideas presented here can be extended to
micellar systems, our discussions and numerical simulations are limited
to concentrations below the critical micelle concentration (CMC).

The pendant bubble technique has been adopted to study dynamic
surface tension by recording bubble shapes from the time of formation
in a surfactant solution until they have attained equilibrium, providing
detailed surface tension evolutions under hydrostatic conditions that are
suitable for analysis in terms of the surfactant mass transfer dynamics
and surfactant thermodynamics, (see earlier reviews [2�5], as well as
the literature reviews in Pan et al. [6] and Lee et al. [7]). These studies
have improved our understanding of dynamic surface tension in terms
of bulk diffusion, adsorption�desorption kinetics, and intermolecular
interactions among adsorbed surfactants. Two important ideas have
been exploited to provide this deeper understanding. The first is the
existence of a characteristic length scale overwhich bulk diffusion occurs
for adsorption to a surface, termed the adsorption depth h, discussed in
detail in Ferri and Stebe [5]. The second is the concept of a shift in mass
transfer mechanism controlling the rate of surface tension reduction
with increasing bulk concentration, even at concentrations below
the CMC [6, 8�10]. In the following paragraphs, both concepts are
reviewed briefly for planar interfaces. The role of drop or bubble radius,
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explored in prior work in the diffusion-controlled limit [12], is then
more fully discussed, and the new intrinsic length scale is introduced.

The adsorption depth, h, can be understood by considering the
adsorption of surfactant to a planar area element, dA. The mass
adsorbed at equilibrium can be estimated as Ceq dA, where Ceq is
the surface concentration of surfactant in equilibrium with the bulk
concentration, C1. To estimate the depth depleted to supply the area
element, dA, consider the mass in the volume element, dV, below the
interface, C1dV ¼ C1hdA. Equating this expression to the adsorbed
mass, the adsorption depth can be found:

h ¼ Ceq=C1: ð2aÞ

The adsorption depth is a measure of the distances over which surfac-
tant molecules must diffuse to supply the interface. For planar sys-
tems, h can be used to define a characteristic time required to
supply surfactant to the interface by diffusion,

sDplanar ¼ h2=D; ð2bÞ

where D is the surfactant diffusivity. Because surfactant molecules
have finite cross-sectional areas, there is an upper bound to the sur-
face concentration, given by the maximum packing limit, C1. Thus,
at high concentrations, h varies inversely with bulk concentration,
and the characteristic diffusion time scale becomes rapid as concen-
tration increases. The adsorption depth for common surfactants can
be on the order of 10�1m for dilute concentrations of surfactants
and can reduce to between 10�5�10�3m for concentrations approach-
ing the CMC [5].

When a planar fluid interface is formed in a surfactant solution,
surfactant adjacent to the interface adsorbs, depleting the solution
immediately below the surface. Surfactants diffuse from the bulk to
supply this depleted region. At long times, the diffusion flux slows as
the surface concentration approaches equilibrium, and the rates of
adsorption and desorption must balance. Thus, the rates of adsorption,
desorption, and bulk diffusion all play a role in determining the surface
tension evolution. Scaling arguments are presented here to motivate
the numerical simulations performed in this article. The characteristic
timescale for a purely diffusion-controlled flux to a planar interface
is given in Equation (2b). The characteristic timescale for a purely
adsorption-desorption�controlled flux (assuming Langmuirian
kinetics) is given by

sads�des ¼
1

ðbC1 þ aÞ ; ð3Þ
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where bC1 is the characteristic collisional frequency for adsorption
and a is the desorption kinetic constant. The ratio of the diffusion time
scale to the adsorption�desorption time scale yields

Kplanar ¼
a
D

Ceq
2

C1
2

bC1
a

þ 1

� �
: ð4Þ

This ratio determines the mechanism that controls the evolution of the
surface tension in a planar system. If Kplanar>>1, diffusion is rate limit-
ing (i.e., diffusion is relatively slow compared with adsorption�
desorption kinetics). Conversely, if Kplanar<<1, adsorption�desorption
kinetics are rate limiting. It is also clear that Kplanar depends strongly
on the bulk concentration. At dilute concentrations, ðbC1

a << 1Þ the sur-
face concentration is related to the bulk concentration by a Henry’s law
slope, Ceq � C1

bC1
a , where C1 is the maximum packing of surfactant.

At high concentration, ðbC1
a >> 1Þ, Ceq approaches the maximum pack-

ing, C1, slowly from below. Using these limiting arguments, asymp-
totic forms for Kplanar can be derived:

Kdilute ¼
b2

D

C1
2

a
; ð5aÞ

Kconcentrated ¼ bC1
D

C1
C1

¼ Kdilute

bC1
a

: ð5bÞ

Note that this delineation as dilute or concentrated is given in terms of
bC1
a ; the normalizing factor for concentration in this expression (a=b) is

quite small (see recent reviews [2, 5, 6]; for example, a=b is 5� 10�6M
for the Surfynol1 acetylenic diol surfactant [13] and 2.5� 10�8M for
C12E6 [6]). Simply, bulk concentrations for which the surface tension
reduces by more than 5�10mN=m from the clean interface value cor-
respond to concentrated solutions, according to this argument. At di-
lute concentrations, the ratio of these time scales is independent of
bulk concentration. However, for bC1

a >> 1 (i.e., the normal circum-
stance), Kplanar varies inversely with concentration, indicating that dif-
fusion becomes less important as concentration increases. Depending
upon the values of the physicochemical constants in Equation (5b),
the mass transfer mechanism can shift from one of diffusion control
at dilute concentrations to kinetic control at higher concentrations
(which can be well below the CMC). Arguments along these lines were
developed independently by Pan et al. [6] and Lin and collaborators
[8�10], and were used to guide pendant bubble experiments designed
to determine the kinetic constants for adsorption and desorption for
ethoxylated surfactants with structures CnEm, where Cn indicates a
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saturated hydrocarbon chain of n carbons and Em represents repeated
ethoxy groups, (�OCH2CH2)m�OH. Pan focused on the mass transfer
of C12E6 and showed that this molecule’s mass transfer indeed shifts
from diffusion control at dilute concentrations to kinetic control at
elevated bulk concentrations. Lin and collaborators have studied a ser-
ies of ethoxylated surfactants; their results are summarized in Table 1.

When the adsorption depth is small compared with the bubble
radius, b, the diffusional fluxes are well described by the planar argu-
ments given above. However, since h can be as large as 10�1m, the
ratio h=b � 1 over a large range of concentrations. Under these con-
ditions, diffusional mass flux is faster to the sphere than to a planar
surface. A dimensional analysis on the surface mass balance equating
the rate of adsorbed surfactant accumulation to the diffusion flux from
solution to a spherical surface of radius b yields an amended charac-
teristic time scale for diffusion:

sDsphere ¼ hb=D: ð6Þ

The characteristic time for adsorption�desorption remains unchanged
from Equation (3). Therefore, the ratio of these time scales becomes:

Ksphere ¼
hb=D

1=ðbC1 þ aÞ ; ð7aÞ

which for a Langmuir model for Ceq simplifies for all concentrations to

Ksphere ¼
b

RD�K
; ð7bÞ

where the intrinsic length scale, RD�K, is defined:

RD�K ¼ D

bC1
: ð7cÞ

For Ksphere>>1, mass transfer to the sphere is diffusion controlled. For
Ksphere<<1, mass transfer to the sphere is kinetically controlled. (Note
that Kplanar ¼ h=RD�K, so RD�K is important even in the absence of

TABLE 1 RD-K for Various Surfactants

C1 (mol=m2)� 106 b m3=mol=s D m2=s� 1010 RD�K (micron)

C12E6 3.5 4.0 6.0 42.9
C14E8 6.8 5.4 8.7 23.7
C12E8 2.7 4.6 8.0 65.2
C10E8 3.0 6.9 6.5 30.7
n-decanol 6.5 6.7 7.7 17.7
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curvature.) The characteristic radius at which mass transfer to a drop
or bubble shifts from diffusion controlled to kinetic control is defined
as RD-K. The collapse of the physicochemical scaling arguments into
this simple-length scale is particularly powerful. It has been noted
by Pan et al. [6] that the factor bC1 varies weakly with surfactant
type, with values ranging from roughly 10�4�10�6m=s for surface-
active materials ranging from weakly surface-active short-chain alco-
hols to highly surface-active surfactants. The diffusivity, D, also varies
weakly with surfactant type, because most nonpolymeric surfactants
fall within a similar size range; D can usually be estimated as roughly
5� 10�10m2=s. Therefore, RD�K usually falls within the range of
5� 10�6 to 5� 10�4m; values for RD�K corresponding to a number
of highly surface-active substances studied in the literature are
reported in Table 1. For highly surface-active molecules, RD�K can
range from as high as 65 microns (for C12E8) to as low as 17 microns
(for 1-decanol). Thus, highly surface-active molecules adsorbing to
bubbles or drops with radii of roughly 10 microns or less should be
kinetically controlled for all concentration ranges by this argument.
While our main focus is on fluid interfaces, the adsorption and dif-
fusion discussion presented is quite general and applies to adsorption
to solid surfaces as well. Thus, these shifts in controlling mechanisms
for mass transfer to spherical particle arguments presented here apply
equally to solid particles and indicate that adsorption kinetics may
dominate for all small particles.

In this article, the shifts in mechanism predicted by this scaling
argument are confirmed for the example of the surfactant C12E6,
whose adsorption and desorption kinetic constants, bulk diffusivity,
and Frumkin parameters have been reported by Pan et al. [6] The
evolutions of the surface tensions and surface concentrations are found
by numerically integrating the equations governing mass transfer
to a spherical bubble or drop of radius b with surfactant in the fluid
external to the sphere using these kinetic constants. The evolutions
predicted by the mixed kinetic-diffusion model are compared with
those obtained by considering mass fluxes controlled either solely by
diffusion or by the sorption kinetics.

SURFACTANT TRANSPORT TO A SPHERICAL BUBBLE

Two types of quiescent adsorption experiments can be performed for a
bubble immersed in a surfactant solution. The bubble can be freshly
formed in solution and surfactant can adsorb to reduce the surface
tension to its equilibrium value. Or, a bubble already at equilibrium
with its surroundings can be suddenly compressed to a surface
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concentration greater than its equilibrium. The subsequent desorption
of surfactant and increase in surface tension to equilibrium can be
studied. The equations governing both cases are delineated here.

Mixed Controlled Adsorption to an Initially
Surfactant-free Surface

A bubble of radius b is formed at t ¼ 0 in a surfactant solution of
far-field concentration, C1. It is assumed that all motion associated
with the bubble formation dissipates rapidly compared with the mass
transfer time scales, so convection is ignored. A spherical coordinate
system is adopted. Since spherical symmetry is assumed, the concen-
tration varies spatially only with radial coordinate r. The sublayer
concentration, Cs, is defined as the concentration of surfactant in
solution immediately adjacent to the interface, i.e.,

CsðtÞ ¼ Cðr ¼ b; tÞ: ð8Þ

Initially, Cs is equal to C1, the bulk concentration profile is spatially
uniform, and the surface concentration, C, is zero, i.e.,

Csðt ¼ 0Þ ¼ C1; Cðr; t ¼ 0Þ ¼ C1; Cðt ¼ 0Þ ¼ 0: ð9Þ

The Frumkin model [14] is adopted to describe the adsorption�
desorption flux of surfactant:

dC
dt

¼ bC1Cs 1� C
C1

� �
� a expð�KC=C1ÞC; ð10Þ

where b and a are the kinetic constants for adsorption and desorption,
and K is a measure of (net) attractive or repulsive interactions
between the adsorbed surfactants, which are assumed here to alter
the desorption kinetics of the surfactant. These parameters can be
described in terms of the zero-coverage kinetic constants, bo and ao,
and the activation energies for adsorption and desorption, Eads and
Edes, according to

b ¼ bo exp
�EadsðCÞ

RT

� �
; ð11aÞ

a ¼ ao exp
�EdesðC ¼ 0Þ

RT

� �
; K ¼ @Edes

@C
ðC ¼ 0Þ: ð11bÞ
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Surfactants adjacent to the interface adsorb, depleting the concen-
tration in the region exterior to the bubble (r > b). Surfactant diffuses
toward this depleted region according to Fick’s law,

D
1

r2
@

@r
r2

@C

@r

� �
¼ @C

@t
; ð12Þ

where D is the surfactant diffusivity. This equation obeys two bound-
ary conditions; the sublayer concentration is determined by the dif-
fusion flux according to Equation (8), and the far-field condition
requires that

lim
r!1

Cðr; tÞ ¼ C1: ð13Þ

A surface mass balance at the interface requires that diffusion and
kinetic fluxes balance, i.e.,

dC
dt

¼ D
@C

@r

� �
r¼b

: ð14Þ

At equilibrium, the bulk concentration becomes uniform, and the net
adsorption�desorption flux becomes zero, yielding the Frumkin
adsorption isotherm by equating the right-hand side of Equation
(10) to zero:

C
C1

¼ Cs=a

expðKC=C1Þ þ Cs=a
; ð15Þ

where a ¼ a=b. Corresponding to this isotherm, the surface equation of
state relating the surface tension, c, to the surface concentration, C, is
given by

c ¼ co þ RTC1 ln 1� C
C1

� �
� K

2

C
C1

� �2
" #

; ð16Þ

where co is the surface tension of the interface in the absence of surfac-
tant adsorption. This expression relates ceq to the equilibrium surface
concentration, Ceq. In addition, this equation applies far from equilib-
rium, so Equation (16) is adopted to relate the instantaneous surface
concentration, C(t), to the instantaneous surface tension, c(t), in the
ensuing dynamic surface-tension simulations.

Mixed Controlled Desorption from a Suddenly
Compressed Surface

Consider a bubble at rest with an interface in equilibrium with the
bulk concentration. At t ¼ 0, let the bubble surface area be reduced,
compressing the surface concentration to some value C0 in excess of
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Ceq. For mixed kinetic�diffusion-controlled transport, the surfactant
must desorb before it can diffuse away from the interface, and the
interface and sublayer concentration are initially out of equilibrium.
For these circumstances, the initial condition on the surface concen-
tration (Equation (9)) must be amended to be:

Csðt ¼ 0Þ ¼ C1; Cðr; t ¼ 0Þ ¼ C1; Cðt ¼ 0Þ ¼ C0: ð17Þ

The remaining governing equations and boundary conditions remain
unchanged.

Diffusion-Controlled Mass Flux

If adsorption�desorption kinetics are instantaneous, the sublayer con-
centration, Cs, remains in equilibrium with the instantaneous surface
concentration, C(t), as expressed by the adsorption isotherm in Equa-
tion (15). Thus, Equations (12)�(14) are solved simultaneously with
Equation (15), subject to the initial conditions

Csðt ¼ 0Þ ¼ CsðC0Þ; Cðr; t ¼ 0Þ ¼ C1; Cðt ¼ 0Þ ¼ C0: ð18Þ

Kinetically Controlled Adsorption/Desorption

If diffusion is rapid compared with adsorption�desorption kinetics,
the sublayer concentration is equal to the bulk concentration, and
the evolution of the surface concentration is governed by Equation
(10) with Cs ¼ C1, subject to the initial condition that Cðt ¼ 0Þ ¼ 0
for adsorption to a clean interface, or Cðt ¼ 0Þ ¼ C0 for desorption from
a suddenly compressed interface.

Dimensional Analysis of the Governing Equations

Equations (8) and (12)�(14) can be solved analytically to give a closed-
form expression relating the surface concentration, C(t), and sublayer
concentration, Cs, in a transcendental equation analogous to the Ward
and Tordai equation [15], which can be solved numerically at the
interface with the kinetic flux expression to yield the time evolution
of C and Cs:

CðtÞ ¼ Cðt ¼ 0Þ þ 2ffiffiffi
p

p C1
ffiffiffiffiffiffi
Dt

p
�
Z ffiffi

t
p

0

Csðt� sÞd
ffiffiffiffiffiffi
Ds

p
8><
>:

9>=
>;

þD

b
C1t�

Z t

0

Csðt0Þdt0
8<
:

9=
;: ð19Þ
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We are interested in discussing the effects of decreasing bubble radius
on the diffusion mass flux and on the bulk concentration profile, C(r,t).
Therefore, we forego this usual approach and solve the bulk equations
directly numerically.

All of these equations can be cast in dimensionless form (and indeed
are rearranged for the purposes of numerical integration). However,
the important dimensional arguments used to guide this study can
be made by considering Equations (10) and (19). Adopting the follow-
ing characteristic scales:

ĈC ¼ C
Ceq

; ĈC ¼ CðtÞ
C1

; t̂t ¼ t

sDsphere
: ð20Þ

Equation (19) becomes

ĈCðt̂t Þ ¼ 2ffiffiffi
p

p b

h

ffiffî
tt

p
�

Z ffiffî
tt

p

0

ĈCsðt̂t� ŝsÞd
ffiffiffî
ss

p
8>><
>>:

9>>=
>>;þ t̂t�

Z t̂t

0

ĈCsðt0Þdt0

8><
>:

9>=
>;; ð21Þ

and the adsorption�desorption flux expression in Equation (10)
becomes

dĈC

dt̂t
¼ X

bC1
a

ĈCs
C1
Ceq

� ĈC

� �
� ĈC exp �KCeq

C1
ĈC

� �� �
; ð22aÞ

where

X ¼ ab
D

Ceq

C1
¼ Ksphere 1� Ceq

C1

� �
exp �K

Ceq

C1

� �
: ð22bÞ

In these equations, the time scales and dimensionless groups dis-
cussed in the Introduction to this article emerge. In Equation (21),
the first two terms correspond to the solution for diffusion-controlled
adsorption to a planar surface. They are weighted by the ratio of
(h=b)�1. The second two terms correspond to the effects of curvature
on the mass flux. For small radii, (h=b)�1 tends to zero, and the planar
terms become small corrections to the curvature terms. When the
radius is large, (h=b)�1 is greater than unity, and the planar terms
dominate the solution. (In fact, the appropriate time scale changes
from sD sphere to sD planar in that circumstance, and the curvature terms
become weak corrections to the planar solution.) In Equation (22), X is
proportional to Ksphere. The smaller is Ksphere, the slower is the kinetic
flux to the interface relative to diffusion, and the more important the
kinetic barriers to adsorption�desorption become.
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Numerical Integration

The governing equations were integrated adopting the constants
obtained by Pan et al. [6] in their analysis of C12E6; these constants
are given in Table 2. The numerical techniques adopted to solve the
governing equations are quite standard [16] and so are described only
briefly. The bulk mass balance in Equation (12), the diffusion flux to
the interface in Equation (14), and the adsorption�desorption flux
in Equation (10) are coupled through the sublayer concentration, Cs,
and therefore were solved simultaneously. The equations and boun-
dary conditions were discretized using a centered difference scheme
with time advanced implicitly. For each time step we use the following
iteration scheme. Values for Cs and C were taken from the previous
iteration step. Equation (12) was solved by the TriDiagonal Matrix
Algorithm (TDMA). Equations (10) and (14) were then solved to
update Cs and C. These iterations were continued until the computed
Cs and C did not change to within a relative error of 10�3. The next
time step was then computed. The length scale for each run was
related to h=b; the radial discretization was on the order of 30 grids
per that length, and 20 times that length is used for simulating the
far-field domain in Equation (13). A time step of 10�7 proved to be
adequate for all runs. For the kinetic-controlled limit, the mass flux
(Equation (10)) was solved for C using first-order integration in time,
with time steps of 10�8.

RESULTS AND DISCUSSION

The surface concentration and surface tension evolutions predicted
numerically for C12E6 are reported here. First, adsorption to an in-
itially surfactant-free bubble is studied for fixed concentration as a
function of bubble radius. For radii that are small enough, it is shown
that the mass transfer is kinetically controlled for all concentrations.
Second, desorption from a surface that is suddenly compressed above
its equilibrium surface concentration is studied as a function of
decreasing bubble radius at fixed bulk concentration.

In Figures 1a�1c, the equilibrium surface tension, the adsorption
isotherm, and the adsorption depth variation with C1 that correspond

TABLE 2 C12E6 Frumkin Isotherm Constants

a (s�1)�104 bC1 (m=s)� 105 C1 (mol=m2)� 106 K D (m2=s)� 1010

1.40 1.40 3.48 6.652 6.00
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to the coefficients in Table 2 are shown. In the experiments of Pan
et al. [6], these constants were established two ways. Equilibrium
surface tensions as a function of bulk concentration were obtained
as long-time asymptotes to pendant bubble evolutions. These equilib-
rium data must agree with the adsorption isotherm predictions. A
more stringent set of data was obtained by using the pendant bubble
as a Langmuir trough. The pendant bubble was formed and equili-
brated in a surfactant solution. The bubble interface was then rapidly
expanded and compressed, faster than adsorption�desorption or
diffusion kinetics could change the adsorbed amount of surfactant.
The surface tension variation with surface concentration was
measured and compared favorably with the Frumkin model.

Adsorption to an Initially Surfactant-free Spherical Surface

In Figures 2a and 2b, the predicted surface tension and surface concen-
tration evolutions for adsorption to a freshly formed bubble surface for
C1 ¼ 8� 10�7M and b ¼ 10�3m are presented (h=b ¼ 2.1). Three
curves are shown in each figure. The solid curve corresponds to the
full solution of the mixed kinetic�diffusion-controlled model.
The dashed curve corresponds to the kinetic-controlled model, and the
dashed-dotted curve corresponds to the diffusion-controlled curve.

FIGURE 1 (a) The equilibrium surface tension, c, as a function of bulk con-
centration, C1, using the Frumkin coefficients for C12E6 reported in Table 2.
The symbol indicates the CMC at 8.9� 10�5M. (b) The corresponding equilib-
rium adsorption isotherm Ceq versus C1. (c) The adsorption depth h versus C1.
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In Figures 2a and 2b, the full solution deviates only slightly from the
diffusion-controlled prediction. These evolutions are similar to those
that were measured at dilute bulk concentrations for C12E6 using the
pendant bubble.

In Figure 2, the mixed-controlled predictions are always slower
than either the kinetic-controlled predictions or the diffusion-

FIGURE 1 (Continued).
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FIGURE 2 (a) The predicted surface tension evolution, c(t), for adsorption to
a freshly formed bubble surface. Solid curve: full mixed kinetic�diffusion-con-
trolled model. Dot-Dashed curve, the diffusion-controlled model; dashed curve,
kinetic-controlled model. C1 ¼ 8� 10�7M, b ¼ 10�3m, h=b ¼ 2.1. (b) The
predicted surface concentration evolution C(t)=Ceq for the conditions in (a),
where Ceq ¼ 1.68� 10�6mol=m2. The full solution deviates only slightly from
the diffusion-controlled prediction.
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controlled predictions, because the mixed model includes both
processes occurring in series. If one of these two processes were rate
limiting, the mixed-controlled curve would tend to that rate-limiting

FIGURE 3 (a) The predicted surface tension evolution, c(t), for adsorption to
a freshly formed bubble surface. Conventions for model curves are the same as
in Figure 2. C1 is the same as in Figure 2. b ¼ 10�4m, h=b ¼ 21. (b) The pre-
dicted surface concentration evolution C(t)=Ceq for the conditions in (a). The
full mixed control solution deviates significantly from the diffusion-controlled
prediction.
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profile. The aim of this study is to show that the mixed-controlled
curve tends to the kinetically-controlled limit as the bubble radius is
decreased.

FIGURE 4 (a) The predicted surface tension evolution, c(t), for adsorption to
a freshly formed bubble surface. Conventions for model curves the same as in
Figure 2. C1 is the same as in Figure 2. b ¼ 10�5m, h=b ¼ 210. (b) The
predicted surface concentration evolution C(t)=Ceq for the conditions in (a).
The full mixed-control solution closely approaches the kinetic-controlled
prediction.
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Predicted surface tension and surface concentration evolutions in
Figure 3a and 3b for b ¼ 10�4m (h=b ¼ 21), and in Figures 4a and
4b for b ¼ 10�5m (h=b ¼ 210) for fixed C1 ¼ 8� 10�7M. The profiles
move progressively away from the diffusion-controlled limit toward
the kinetic-controlled limit as the bubble radius decreases, in agree-
ment with the arguments presented in Equation (7).

This is an intriguing result because the adsorption depth, h, is
orders of magnitude larger than the radius of the sphere, indicating
that depletion should be significant, and bulk diffusion should play a
role in the dynamics of this process. A family of curves for the concen-
tration, C(r), at several time steps for a diffusion-controlled process is
presented in Figure 5 for the smallest radius, b ¼ 10�5m. These pro-
files have similar features for all of the radii studied at this concen-
tration; they indicate that the solution is indeed depleted around the
sphere over large distances compared with the sphere radius but that
these regions are resupplied by bulk diffusion in times comparable
with one sDsphere. Since sDsphere is proportional to the sphere radius,
diffusional fluxes are rapid, allowing adsorption�desorption kinetics,
which are independent of sphere radius, to become rate limiting.

The scaling argument presented in Equation (7b) and the constants in
Table 2 suggest that for this surfactant drops or bubbles with radii less
than 40 microns will be kinetically controlled for all surfactant bulk
concentrations. In Figure 4, the surface tension and surface

FIGURE 5 The concentration profile in solution, C(r,t)=C1, as a function of
r=b at several time steps for diffusion-controlled adsorption with
C1 ¼ 8� 10�7M and b ¼ 10�5m. The scaled time (t=sDsphere) corresponding
to each profile is reported in the figure legend.
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concentration evolution for a solution of bulk concentration
C1 ¼ 8� 10�7M and bubble radius 10�5m were shown to agree with
kinetically controlled arguments. In Figure 6, the bubble radius is held
fixed at 10�5m, while the concentration is decreased by two orders of
magnitude. These results show that adsorption to spheres of this radius

FIGURE 6 c(t) predictions for b ¼ 10�5m. (a) C1 ¼ 8� 10�8M; (b) C1 ¼
8� 10�9M. Same conventions for model curves as Figure 2. As C1 decreases,
spheres of this radius remain kinetically controlled.
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is kinetically controlled regardless of bulk concentration. Together, the
results in Figures 2�6 confirm the shift of mechanism with bubble
radius predicted by Equation (7b) for adsorption to an initially surfac-
tant-free interface.

FIGURE 7 The predicted profiles for desorption and diffusion away from a
spherical surface compressed so C(t ¼ 0)=Ceq ¼ 2. C1 ¼ 4� 10�7M, Ceq ¼
1.45� 10�6mol=m2; b ¼ 10�3m, h=b ¼ 3.61. Same conventions for model
curves as Figure 2. (a) c(t), (b) C(t)=Ceq. The full mixed-control solution agrees
with a kinetically controlled model at early times, diffusion-controlled model
at later times.

792 F. Jin et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



Desorption from a Compressed, Surfactant-rich
Spherical Surface

This shift in controlling the mass transfer mechanism with decreasing
bubble radius should also occur for interfaces that are compressed to
initial surface concentrations C0 > Ceq. These experiments are usually

FIGURE 8 Predicted profiles for b ¼ 10�4m, h=b ¼ 36.1. All other conditions
the same as in Figure 7. (a) c(t), (b) C(t)=Ceq. The full mixed-control solution
agrees with a kinetically controlled model over much of the evolution.
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performed at sufficiently dilute concentrations that C0 can be signifi-
cantly larger than Ceq yet still remain sufficiently less than the
maximum packing limit, C1 ¼ 3.48� 10�6mol=m2, so that the surface
tension is still large enough to hold the bubble on the needle. In our
simulations, we choose a bulk concentration of C1 ¼ 4� 10�7M, with

FIGURE 9 Predicted profiles for b ¼ 10�5m, h=b ¼ 361. All other conditions
the same as in Figure 7. (a) c(t), (b) C(t)=Ceq. The full mixed-control solution
superposes with the kinetically controlled model.
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a corresponding Ceq ¼ 1.45� 10�6mol=m2, and study the case of
C0 ¼ 2Ceq.

Surfactant must desorb and diffuse away to re-establish equilib-
rium. The surface concentration and surface tension evolutions pre-
dicted for decreasing radii are presented in Figures 7�9. Again,
there are three curves in each figure. For b ¼ 10�3m, kinetics control
the initial evolution and diffusion controls the late stages of equili-
bration, as shown in Figures 7a and 7b. For b ¼ 10�4m similar trends
are observed, but with smaller discrepancies between the mixed-
control model and the kinetically controlled limit, as reported in
Figures 8a and 8b. Finally, in Figures 9a and 9b, for which b ¼ 10�5m,
m, the entire evolution agrees closely with the kinetically controlled
model.

CONCLUSIONS

In this article a new intrinsic-length scale, RD-K, was developed to de-
scribe adsorption to spherical surfaces. This length scale is significant
for adsorption to curved surfaces, for which the ratio of the adsorption
depth, h, to the drop or bubble radius, b, is large. For all drops or bubbles
with radii larger than RD-K, mass transfer to the surface is diffusion
controlled. For all drops or bubbles with radii less than RD-K, mass
transfer is kinetically controlled. Significantly, RD-K is independent
of bulk concentration, so drops or bubbles that have adsorption�
desorption controlledmass transfer will be kinetically controlled regard-
less of how dilute the solution. For highly surface-active compounds,
RD-K is on the order of tens of microns. These results indicate that
new surface analysis techniques for the study of dynamic surface
tension at reduced length scales should allow significant progress in
the study of adorption�desorption barriers.
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